Chapter-6 Empirical Analysis

This is the more critical and empirical interpretation of the research work to vindicate the research objectives. This chapter has entertained complex statistical results into attractive models and supported by crucial revelation. The brevity of interpretation has added value and increased the readability to a higher elevation.....

 Table 6 1: Descriptive statistics of independent variables with respected
to Mean, Standard Deviation values, Coefficient of variance.

Sl. No	Variables	Mean	SD	CV
1.	Age(X1)	45.56	11.59	25.44
2.	Education(X2)	9.98	2.86	28.65
3.	Family size(X3)	5.68	2.95	51.93
4.	Cropping intensity(X4)	126.40	22.47	17.77
5.	Total holding size(X5)	2.38	2.06	86.55
6.	Total home stead area(X6)	0.56	0.40	71.42
7.	Total area under horticultural crops(X7)	1.50	1.60	106.66
8.	Total area under field crops (X8)	6.97	3.76	53.94
9.	Irrigation status(X9)	0.78	0.10	12.82
10.	Organic manure applied /unit area(X10)	713.00	152.80	21.43
11.	Green leaf manure applied/unit area (X11)	8.06	3.89	48.26
12.	Bio-Fertilizer applied /unit area (X12)	0.16	0.05	31.25

13.	Compost applied/unit area (X13)	46.4	11.56	24.91
14.	Organic pesticides applied/unit	10.18	2.13	20.92
	area(X14)			
15.	No of cattle's (X15)	3.22	1.68	52.17
16.	Total amount of cow dung	29.22	20.91	71.56
	produce(X16)			
17.	Avg. electric bill for Domestic	29.86	16.21	54.28
	purpose in month(X17)			
18.	Avg. electric bill for Field purpose	15.69	13.08	83.36
	in month(X18)			
19.	Avg. consumption for daily	15.57	5.92	38.02
	requirements(X19)			
20.	Exposure to media(X20)	2.85	1.32	46.31
21.	Avg. expenditure allotted in	1359.68	852.20	62.67
	month(X21)			

Table 6.2: Coefficient of correlation(r): Productivity of organicpaddy (Y1) vs. 21 independent variables(X1-X21).

Sl. No	Variables	r value	Remarks
1	Age (X1)	-0.172	
2	Education (X2)	-0.101	
3	Family size (X3)	0.803	**
4	Cropping intensity (X4)	0.018	
5	Total holding size (X5)	0.905	**
6	Total home stead area (X6)	-0.202	
7	Total area under horticultural crops (X7)	-0.097	
8	Total area under field crops (X8)	0.155	
9	Irrigation status (X9)	0.019	
10	Organic manure application (X10)	0.215	
11	Green leaf manure application (X11)	0.940	
12	Bio-Fertilizer application (X12)	0.008	
13	Compost application (X13)	0.033	
14	Organic pesticides application (X14)	0.200	
15	No of cattles (X15)	0.093	

16	Total amount of cow dung produce (X16)	-0.087	
17	Avg. electric bill for Domestic purpose (X17)	-0.062	
18	Avg. electric bill for Field purpose (X18)	0.020	**
19	Avg. consumption for daily requirements (X19)	-0.201	
20	Exposure to media (X20)	0.798	
21	Expenditure allocation (X21)	0.919	
	r>0.220 significant at p=0.05(*) r>0.287 significant at p=0.01(**)		

Table- 2: shows the co-efficient of correlation between productivity of organic paddy (Y_1) and 21 independent variables.

Results: It is found that the variables, Family size (X_2) , Total holding size (X_5) , Green leaf manure application (X_{11}) , Exposure to media (X_{20}) , Expenditure allocation (X_{21}) , have exerted positive and significant correlation with the dependent variable, productivity of organic paddy (Y_1) .

Revelation: Higher holding size with higher cropping intensity increases production and productivity of organic paddy. Application of higher green leaf manure enhances organic paddy productivity by enriching the soil quality. High expenditure allocation on health, farming, education and more exposure to media, make farmer more cosmopolite through widening their knowledge, which enables them to get more production.

Sl. No	Variables	r value	Remarks
1	Age (X1)	0.245	*
2	Education (X2)	-0.065	
3	Family size (X3)	0.142	
4	Cropping intensity (X4)	0.758	**
5	Total holding size (X5)	0.037	
6	Total home stead area (X6)	-0.073	
7	Total area under horticultural crops (X7)	0.112	
8	Total area under field crops (X8)	0.909	**
9	Irrigation status (X9)	0.246	*
10	Organic manure application (X10)	-0.803	**
11	Green leaf manure application (X11)	-0.171	
12	Bio-Fertilizer application (X12)	0.027	
13	Compost application (X13)	0.031	
14	Organic pesticides application (X14)	0.803	**
15	No of cattles (X15)	-0.140	
16	Total amount of cow dung produce(X16)	0.102	
17	Avg. electric bill for Domestic purpose (X17)	-0.064	
18	Avg. electric bill for Field purpose (X18)	0.220	
19	Avg. consumption for daily requirements	0.175	
	(X19)		
20	Exposure to media (X20)	0.932	**
21	Expenditure allocation (X21)	-0.091	
	r>0.220 significant at p=0.05(*)		
	r>0.287 significant at p=0.01(**)		

Table 6. 3: Coefficient of correlation(r): Productivity of inorganicpaddy (Y2) vs. 21 independent variables(X1-X21).

Table- 3 shows the co-efficient of correlation between productivity of inorganic paddy (Y1) and 21 independent variables.

Results: It is found that the variables like Age (X_1) , Cropping intensity (X_4) , Total area under field crops (X_8) , Organic pesticide application (X_{14}) and Exposure to media (X_{20}) have exerted positive, while variable, organic

Organic Farming in India: The Village Level Rea	ality
ISBN: 978-93-85822-12-4	131

manure application (X_{10}) has exerted negative significant correlation with the dependent variable, productivity of inorganic paddy (Y_2) .

MODEL-2

Revelation: Generally traditional farmers don't want to follow organic farming against inorganic. More cropping intensity results more productivity. Farmers prefer chemical fertilizer instead of organic manure to get higher productivity. With the development of agriculture, farmers are gradually adopting to organic pesticides application. As per farmers' perception, application of organic pesticides effectively controls the spread of insect-pest and increases productivity level. Exposure to media enriches farmers with new technologies, that leads to increase in productivity.

Table 6. 4: Coefficient of correlation(r): Market value of organicpaddy (Y3) vs. 21 independent variables(X1-X21).

Sl. No	Variables	r value	Remarks
1	Age (X1)	-0.172	
2	Education (X2)	-0.101	
3	Family size (X3)	0.146	
4	Cropping intensity (X4)	0.855	**
5	Total holding size (X5)	0.018	
6	Total home stead area (X6)	-0.195	
7	Total area under horticultural crops (X7)	-0.202	
8	Total area under field crops (X8)	0.097	
9	Irrigation status (X9)	0.155	
10	Organic manure application (X10)	-0.019	
11	Green leaf manure application (X11)	0.940	**
12	Bio-Fertilizer application (X12)	0.798	**
13	Compost application (X13)	0.215	
14	Organic pesticides application (X14)	-0.140	
15	No of cattles (X15)	0.803	**
16	Total amount of cow dung produce (X16)	0.008	
17	Avg. electric bill for Domestic purpose (X17)	0.033	
18	Avg. electric bill for Field purpose (X18)	0.200	
19	Avg. consumption for daily requirements (X19)	0.093	
20	Exposure to media (X20)	0.919	**
21	Expenditure allocation (X21)	-0.087	
	r>0.220 significant at $p=0.05(*)$	-0.062	
	r>0.287 significant at p=0.01(**)		

Table- 4 shows the co-efficient of correlation between market value of organic paddy (Y3) and 21 independent variables.

Results: It is found that the variables like Cropping intensity (X_4) , Green leaf manure application (X_{11}) , Bio-Fertilizer application (X_{12}) , No .of cattle's (X_{15}) and Exposure to media (X_{20}) have exerted positive and

significant correlation with the dependent variable, market value of organic paddy (Y_3) .

MODEL - 3

Revelation: Higher cropping intensity, more green leaf manure and biofertilizer application, increase the production and quality of organic paddy which derives higher market value. More the no. of cattle, the more is the production of cow dung which is use as a better import for higher production. Exposure to media provides various market information, which enables the farmer to get proper market value of organic paddy.

Sl. No	Variables	r value	Remarks
1	Age (X1)	-0.206	
2	Education (X2)	-0.122	
3	Family size (X3)	0.759	**
4	Cropping intensity (X4)	0.201	
5	Total holding size (X5)	0.029	
6	Total home stead area (X6)	-0.200	
7	Total area under horticultural crops (X7)	-0.305	*
8	Total area under field crops (X8)	-0.149	
9	Irrigation status (X9)	-0.016	
10	Organic manure application (X10)	0.240	*
11	Green leaf manure application (X11)	0.758	**
12	Bio-Fertilizer application (X12)	0.034	
13	Compost application (X13)	0.241	*
14	Organic pesticides application (X14)	0.940	**
15	No of cattles (X15)	0.925	**
16	Total amount of cow dung produce(X16)	-0.141	
17	Avg. electric bill for Domestic purpose (X17)	0.022	
18	Avg. electric bill for Field purpose (X18)	0.153	
19	Avg. consumption for daily requirements(X19)	0.168	
20	Exposure to media(X20)	0.096	
21	Expenditure allocation (X21)	0.940	**
	r>0.220 significant at p=0.05(*)		
	r>0.287 significant at p=0.01(**)		

Table 6. 5: Coefficient of correlation(r): Return of the product from
Organic paddy (Y_4) vs. 21 independent variables(X_1 - X_{21}).

Table- 5 shows the co-efficient of correlation between return of the product from organic paddy (Y4) and 21 independent variables.

Results: It is found that the variables like Family size (X_3) , Organic manure application (X_{10}) , Green leaf manure application (X_{11}) , Compost application

Organic Farming in India: The Village Level Re	ality
ISBN: 978-93-85822-12-4	135

 (X_{13}) , Organic pesticides application (X_{14}) , No. of cattle's (X_{15}) , Expenditure allocation (X_{21}) have exerted positive, while variable, Total area under horticultural crops (X_7) has exerted negative significant correlation with the dependent variable, return of the product from organic paddy (Y_4) .

MODEL - 4

Revelation: Bigger the family size more is the involvement in farming. Application of organic manure, pesticides, compost, increases high production and provides high return from organic paddy. Having more no. of cattle adds some extra proportion to the net return. Higher expenditure allocation has a positive effect on the return from organic paddy.

Sl. No	Variables	r value	Remarks
1	Age (X1)	-0.188	
2	Education (X2)	0.123	
3	Family size (X3)	0.798	**
4	Cropping intensity(X4)	0.024	
5	Total holding size(X5)	0.039	
6	Total home stead area(X6)	-0.146	
7	Total area under horticultural crops (X7)	-0.161	
8	Total area under field crops (X8)	0.798	**
9	Irrigation status (X9)	-0.161	
10	Organic manure application (X10)	0.046	
11	Green leaf manure application (X11)	0.253	*
12	Bio-Fertilizer application (X12)	-0.053	
13	Compost application (X13)	-0.090	
14	Organic pesticides application (X14)	0.052	
15	No of cattle's (X15)	-0.088	
16	Total amount of cow dung produce(X16)	0.932	**
17	Avg. electric bill for Domestic purpose (X17)	0.244	*
18	Avg. electric bill for Field purpose (X18)	0.138	
19	Avg. consumption for daily requirements (X19)	-0.060	
20	Exposure to media (X20)	0.759	**
21	Expenditure allocation (X21)	0.950	**
	r>0.220 significant at p=0.05(*) r>0.287 significant at p=0.01(**)		

Table 6.6: Coefficient of correlation(r): Return of the product from
inorganic paddy (Y ₅) vs. 21 independent variables (X ₁ -X ₂₁)

Table- 6 shows the co-efficient of correlation between return of the product from inorganic paddy (Y4) and 21 independent variables.

Results : It is found that the variables like Family size (X_3) , Total area under fields crops (X_8) , Green leaf manure application (X_{11}) , Total amount of cow

Organic Farming in India: The Village Level Rea	lity
ISBN: 978-93-85822-12-4	137

dung produce (X_{16}), Avg. electric bill for domestic purpose (X_{17}), Exposure to media (X_{20}), Expenditure allocation (X_{21}) have exerted positive and significant correlation with the dependent variable, return of the product from inorganic paddy (Y_5)

MODEL - 5

Revelation: Bigger the family size more is the involvement in farming. More area under field crops yields more production. Farmer prefers application of green leaf manure for enriching soil health, increases high production and provides high return from inorganic paddy. More use of cow dung adds a better import for higher production. Share of power

Organic Farming in India: The Village Level I	Reality
ISBN: 978-93-85822-12-4	138

consumption for agricultural purpose is increasing which provides more income due to more modernization of agriculture. Exposure to media helps in widening the knowledge of farmer which leads to application of new technology in farming. Higher expenditure allocation has a positive effect on the return from inorganic paddy.

Sl. No	Variables	r value	Remarks
1	Age (X1)	0.209	
2	Education (X2)	-0.142	
3	Family size (X3)	0.110	
4	Cropping intensity (X4)	0.919	**
5	Total holding size (X5)	0.037	
6	Total home stead area (X6)	-0.182	
7	Total area under horticultural crops (X7)	-0.165	
8	Total area under field crops (X8)	-0.102	
9	Irrigation status (X9)	0.263	*
10	Organic manure application (X10)	0.919	**
11	Green leaf manure application (X11)	0.043	
12	Bio-Fertilizer application (X12)	0.085	
13	Compost application (X13)	-0.120	
14	Organic pesticides application (X14)	0.041	
15	No of cattle's (X15)	0.022	
16	Total amount of cow dung produce (X16)	0.909	**
17	Avg. electric bill for Domestic purpose (X17)	0.223	*
18	Avg. electric bill for Field purpose (X18)	0.127	
19	Avg. consumption for daily requirements	-0.078	
	(X19)		
20	Exposure to media(X20)	0.925	**
21	Expenditure allocation (X21)	0.950	**
	r>0.220 significant at p=0.05(*)		
	r>0.287 significant at p=0.01(**)		

Table 6.7: Coefficient of correlation(r): Return of the product from mixed farming both org. and inorganic (Y₆) vs. 21 independent variables (X₁-X₂₁).

Table- 7 shows the co-efficient of correlation between return of the product from mixed farming both organic and inorganic paddy (Y5) and 21 independent variables.

Results : It is found that the variables like Cropping intensity (X_4) ,Irrigation status (X_9) Organic manure application (X_{10}) ,Green leaf manure application (X_{11}) , Total amount of cow dung produce (X_{16}) , Avg. electric bill for domestic purpose (X_{17}) , Exposure to media (X_{20}) , Expenditure allocation (X_{21}) have exerted positive and significant correlation with the dependent variable, return of the product from mixed farming both organic and inorganic paddy(Y₆).

MODEL - 6

Revelation: Higher cropping intensity, irrigation status, more green leaf manure and organic manure application, increase high production and

Organic Farming in India: The Village Level I	Reality
ISBN: 978-93-85822-12-4	140

provides high return from mixed farming both (organic and inorganic paddy). More use of cow dung adds a better import for higher production. Share of power consumption for agricultural purpose is increasing which provides more net return from mixed farming. Exposure to media helps in widening the knowledge of farmer which leads to application of new technology in farming. Higher expenditure allocation has a positive effect on the return from mixed farming.

Sl. No	Variables	r value	Remarks
1	Age (X1)	-0.006	
2	Education (X2)	0.271	*
3	Family size (X3)	-0.100	
4	Cropping intensity (X4)	-0.017	
5	Total holding size (X5)	0.056	
6	Total home stead area (X6)	0.037	
7	Total area under horticultural crops (X7)	-0.105	
8	Total area under field crops (X8)	-0.147	
9	Irrigation status (X9)	0.028	
10	Organic manure application (X10)	0.030	
11	Green leaf manure application (X11)	0.026	
12	Bio-Fertilizer application (X12)	0.165	
13	Compost application (X13)	0.036	
14	Organic pesticides application (X14)	0.017	
15	No of cattle's (X15)	0.266	*
16	Total amount of cow dung produce (X16)	-0.106	
17	Avg. electric bill for Domestic purpose	0.178	
	(X17)		
18	Avg. electric bill for Field purpose (X18)	0.135	
19	Avg. consumption for daily requirements	0.120	
	(X19)		
20	Exposure to media(X20)	0.178	

Table 6.8: Coefficient of correlation(r): Livelihood from organic paddy (Y) vs. 21 independent variables (X₁-X₂₁).

21	Expenditure allocation (X21)	0.120	
	r>0.220 significant at p=0.05(*)		
	r>0.287 significant at p=0.01(**)		

Table- 8 shows the co-efficient of correlation between livelihood from organic paddy (Y7) and 21 independent variables.

Results : It is found that the variables like Education (X_2) No .of cattles (X_{15}) have exerted positive and significant correlation with the dependent variable, livelihood from organic paddy (Y_7) .

MODEL - 7

Revelation: Educated farmer prefers modern agriculture such as mixed farming, integrated farming system, organic farming, etc for their better

Organic Farming in India: The Village Level Re	ality
ISBN: 978-93-85822-12-4	142

income and better livelihood. Organic farming provides better production with better market value. Having more no. of cattle's provides quality input for organic farming and adds extra income to farmers' livelihood. Literate farmers prefer organic for their better livelihood.

	paddy (11)	15. 21 00	usui vu		/	le r sq- 0.370
Sl. No.	Variables	Beta	Reg. coef. B	S, error B	t- value	Remarks
1	Age (X1)	.040	0.004	1.927	0.021	
2	Education (X2)	-3.897	-0.104	8.025	-0.486	
3	Family size (X3)	-12.311	-0.340	11.463	-1.074	
4	Cropping intensity(X4)	0.170	0.036	0.968	0.176	
5	Total holding size (X5)	-4.564	-0.088	12.187	-0.375	
6	Total home stead area (X6)	-48.168	-0.182	70.482	-0.683	
7	Total area under horticultural crops (X7)	-4.059	-0.061	19.145	-0.212	
8	Total area under field crops (X8)	11.048	0.389	7.255	1.523	
9	Irrigation status (X9)	- 108.363	-0.102	219.362	-0.494	
10	Organic manure application (X10)	2.253	0.362	0.156	2.627	*
11	Green leaf manure application (X11)	0.147	0.005	5.719	0.026	
12	Bio-Fertilizer application (X12)	- 206.993	-0.099	472.766	-0.438	
13	Compost application (X13)	-1.833	-0.198	2.670	-0.686	

Table 6.9: Multiple Regression Analysis: Productivity of organic paddy (Y_1) vs. 21 causal variables $(X_1 - X_{21})$.

				r	
Organic pesticides	13.386	0.267	11.470	1.167	
application (X14)					
No of cattles (X15)	25.104	0.395	22.165	1.133	
Total amount of	-2.190	-0.428	1.959	-1.118	
cowdung					
produce(X16)					
Avg. electric bill	-1.190	-0.180	1.654	-0.720	
for Domestic					
purpose (X17)					
Avg. electric bill	0.779	0.095	1.836	0.424	
for Field purpose					
(X18)					
Avg. consumption	-7.305	-0.404	5.600	-1.304	
for daily					
requirements (X19)					
Exposure to	0.649	0.008	18.386	0.035	
media(X20)					
Expenditure	0.005	0.043	0.034	0.159	
allocation (X21)					
value>2.048					
significant at					
b=0.05(*)					
	application (X14) No of cattles (X15) Total amount of cowdung produce(X16) Avg. electric bill for Domestic purpose (X17) Avg. electric bill for Field purpose (X18) Avg. consumption for daily equirements (X19) Exposure to media(X20) Expenditure allocation (X21) value>2.048 ignificant at	application (X14)No of cattles (X15)25.104Total amount of cowdung produce(X16)-2.190Avg. electric bill for Domestic purpose (X17)-1.190Avg. electric bill for Field purpose (X18)0.779Avg. consumption for daily equirements (X19)-7.305Exposure to media(X20)0.649Expenditure allocation (X21)0.005value>2.048ignificant	application (X14) \cdot No of cattles (X15)25.1040.395Total amount of cowdung produce(X16)-2.190-0.428Avg. electric bill for Domestic purpose (X17)-1.190-0.180Avg. electric bill for Field purpose (X18)0.7790.095Avg. consumption for daily equirements (X19)-7.305-0.404Exposure to media(X20)0.6490.008Expenditure allocation (X21)0.0050.043ignificant atat-	application (X14) $-$ No of cattles (X15)25.1040.39522.165Total amount of cowdung produce(X16)-2.190-0.4281.959Avg. electric bill for Domestic purpose (X17)-1.190-0.1801.654Avg. electric bill for Field purpose (X18)0.7790.0951.836Avg. consumption for daily equirements (X19)-7.305-0.4045.600Exposure to media(X20)0.6490.00818.386Mathematication (X21)0.0050.0430.034	application (X14) $ -$ No of cattles (X15)25.1040.39522.1651.133Total amount of cowdung produce(X16)-2.190-0.4281.959-1.118Avg. electric bill for Domestic purpose (X17)-1.190-0.1801.654-0.720Avg. electric bill for Field purpose (X18)0.7790.0951.8360.424Avg. consumption for daily equirements (X19)-7.305-0.4045.600-1.304Exposure to media(X20)0.6490.00818.3860.035Expenditure allocation (X21)0.0050.0430.0340.159value>2.048 ignificantat

Table 9 presents the Multiple Linear Regression Analysis to estimate that the respective causal contribution of 21 exogenous variables on the dependent variable, production of organic paddy (Y_1) .

Results: It has been found that the variables Organic manure application (X_{10}) has recorded a significant causal-effect impact on production of organic paddy (Y_1)

Revelation: Organic manure is the most important input for organic farming. So, this causal-effect relationship highly justifies the cause-effect interaction.

So, the variables organic manure application (X_{10}) can be indicator variables to measure the production of organic paddy (Y_1) . r^2 value being 0.370 it is to conclude that 37 percent of the variability embedded with the consequent variable production of organic paddy (Y_1) has been explained with the combination of the 21 causal variables.

			Multiple	r sq- 0.476		
Sl. No.	Variables	Beta	Reg. coef. B	S, error B	t-value	Remarks
1	Age (X1)	-0.712	-0.062	2.185	-0.326	
2	Education (X2)	-2.703	-0.058	9.102	-0.297	
3	Family size (X3)	-21.873	-0.485	13.002	-1.682	
4	Cropping intensity (X4)	0.519	0.088	1.098	0.473	
5	Total holding size (X5)	-3.101	-0.048	13.822	-0.224	
6	Total home stead area (X6)	-45.759	-0.139	79.943	-0.572	
7	Total area under horticultural crops (X7)	-6.865	-0.083	21.715	-0.316	
8	Total area under field crops (X8)	18.797	0.532	8.229	2.284	*
9	Irrigation status (X9)	- 196.295	-0.149	248.810	-0.789	
10	Organic manure application (X10)	0.115	0.132	0.177	0.650	
11	Green leaf manure application (X11)	-0.557	-0.166	6.487	-0.086	
12	Bio-Fertilizer application (X12)	429.609	0.166	536.231	0.801	
13	Compost application (X13)	-2.805	-0.244	3.029	-0.926	
14	Organic pesticides application (X14)	18.520	0.297	13.010	1.424	
15	No of cattle(X15)	54.095	0.684	25.141	2.152	*
16	Total amount of cow dung produce (X16)	-3.741	-0.588	2.222	-1.683	

Table 6.10: Multiple Regression Analysis: Productivity of inorganic paddy (Y_2) vs. 21 causal variables $(X_1 - X_{21})$.

Empirical Analysis

17	Avg. electric bill	-1.612	-0.196	1.876	-0.859	
	for Domestic					
	purpose (X17)					
18	Avg. electric bill	0.732	0.072	2.083	0.351	
	for Field purpose					
	(X18)					
19	Avg. consumption	-4.175	-0.186	6.352	-0.657	
	for daily					
	requirements					
	(X19)					
20	Exposure to	-24.385	-0.243	20.854	-1.169	
	media(X20)					
21	Expenditure	-0.099	-0.060	0.039	-0.242	
	allocation (X21)					
	t value>2.048					
	significant at					
	p=0.05(*)					

The Table 10 presents the Multiple Linear Regression Analysis to estimate that the respective causal contribution of 21 exogenous variables on the dependent variable, production of inorganic paddy (Y_2) .

Results: It has been found that the variables Total area under field crops (X_8) and No. of cattles (X_{15}) has recorded a significant causal-effect impact on production of inorganic paddy (Y_2) .

Revelation: Land as a resource still has got strong determining impact on the productivity. When land resources are ample, risk are shared and harvests are more secure.

No. of cattles has gone proportionate with the volume of cow dung vis-à-vis organic matter production. So, a farmer following organic farming is also characterized with owner of large no. of cattles.

So, the variable total area under field crops (X_8) and no. of cattles (X_{15}) can be indicator variables to measure the production of inorganic paddy (Y_2) . r^2 value being 0.476 it is to conclude that 47.6 percent of the variability embedded with the consequent variable production of inorganic paddy (Y_2) has been explained with the combination of the 21 causal variables.

	Multiple r sq - 0.							
Sl.	Variables	Beta	Reg.	S, error B	t-value	Remarks		
No.			coef. B					
1	Age (X1)	0.553	0.004	26.492	0.021			
2	Education (X2)	-53.584	-0.104	110.338	-0.486			
3	Family size (X3)	-169.276	-0.340	157.621	-1.074			
4	Cropping intensity (X4)	2.337	0.036	13.307	0.176			
5	Total holding size (X5)	-62.762	-0.086	167.564	-0.375			
6	Total home stead area(X6)	-662.310	-0.182	969.123	-0.683			
7	Total area under horticultural crops (X7)	-55.817	-0.061	263.247	-0.212			
8	Total area under field crops (X8)	151.907	0.389	99.754	1.523			
9	Irrigation status (X9)	- 1489.993	-0.102	3016.232	-0.494			
10	Organic manure application (X10)	3.482	0.362	2.140	1.627			
11	Green leaf manure application (X11)	2.019	0.005	78.640	0.026			
12	Bio-Fertilizer application (X12)	- 2846.156	-0.099	6500.531	-0.438			
13	Compost application (X13)	-25.200	-0.198	36.717	-0.686			
14	Organic pesticides application (X14)	184.053	0.267	157.711	1.167			
15	No of cattles(X15)	345.185	0.395	304.773	1.133			
16	Total amount of cow dung produce(X16)	-30.116	-0.428	26.938	-1.118			

Table 6.11: Multiple Regression Analysis: Market value of organic paddy (Y₃) vs. 21 causal variables (X₁ – X₂₁).

Organic Farming in India: The Village Level Reality ISBN: 978-93-85822-12-4

, 149

17	Avg. electric bill	-16.369	-0.180	22.741	-0.720	
	for Domestic					
	purpose (X17)					
18	Avg. electric bill	10.713	0.095	25.249	0.424	
	for Field purpose					
	(X18)					
19	Avg. consumption	-100.444	-0.404	77.002	-1.304	
	for daily					
	requirements					
	(X19)					
20	Exposure to	8.924	0.008	252.810	0.035	
	media(X20)					
21	Expenditure	0.075	0.043	0.469	0.159	
	allocation					
	(X21)					
	t value>2.048					
	significant at					
	p=0.05(*)					

The Table 11 presents the Multiple Linear Regression Analysis to estimate that the respective causal contribution of 21 exogenous variables on the dependent variable, market value of organic paddy (Y_3) .

Results: It is observed that none of the causal variable is significant. So, in that case the highest t-value i.e., organic manure $application(X_{10})$ is considered as significant.

Revelation: The table shows that none of the causal variable has recorded a significant value in terms of impact on consequent variable. However, the variable organic manure application (X_{10}) has shown a near significant relationship which implies the more organic manure applied, the better have been the market value of organic paddy.

So, the variable organic manure application (X_{10}) can be indicator variables to measure the market value of organic paddy (Y_3) . r² value being 0.370 it is to conclude that 37 percent of the variability embedded with the consequent variable market value of organic paddy (Y_3) has been explained with the combination of the 21 causal variables.

Table 6.12: Multiple Regression Analysis: Return of the product from organic paddy (Y_4) vs. 21 causal variables $(X_1 - X_{21})$.

Multiple r sq - 0						r sq - 0.492
Sl. No.	Variables	Beta	Reg. coef. B	S, error B	t-value	Remarks
1	Age (X1)	-6.814	-0.071	17.895	-0.381	
2	Education (X2)	-132.066	-0.341	74.535	-1.772	
3	Family size (X3)	-171.588	-0.458	106.475	-1.612	
4	Cropping intensity (X4)	2.136	-0.023	8.989	2.065	*
5	Total holding size(X5)	-105.343	-0.197	113.192	-0.931	
6	Totalhomestead area (X6)	-156.345	-0.057	654.654	-0.239	
7	Total area under horticultural crops (X7)		0.187	177.827	0.725	
8	Total area under field crops (X8)	112.650	0.384	67.385	1.672	
9	Irrigation status (X9)	-617.281	-0.056	2037.500	-0.303	
10	Organic manure application (X10)	2.775	0.245	1.446	2.228	*
11	Green leaf manure application (X11)	26.304	0.093	53.122	0.495	
12	Bio-Fertilizer application (X12)	-2090.904	-0.097	4391.184	-0.476	
13	Compost application (X13)	7.073	0.074	24.803	0.285	

Empirical Analysis

Organic	203.674	0.393	106.535	1.912	
pesticides					
application					
(X14)					
No of	308.000	0.468	205.878	1.496	
cattles(X15)					
Total amount of	-29.230	-0.553	18.197	-1.606	
cowdung					
produce(X16)					
Avg. electric bill	-7.042	-0.103	15.362	-0.458	
for Domestic					
purpose (X17)					
· · · · ·	-3.736	-0.044	17.056	-0.219	
U					
	-87.342	-0.467	52.016	-1.679	
-					
-					
•					
-					
· /	-90.724	-0.109	170.776	-0.531	
media (X20)					
	-0.084	-0.065	0.317	-0.265	
allocation X21)		-			
t value>2.048					
significant at					
U					
	(X14) No of cattles(X15) Total amount of cowdung produce(X16) Avg. electric bill for Domestic purpose (X17) Avg. electric bill for Field purpose (X18) Avg. consumption for daily requirements (X19) Exposure to media (X20) Expenditure allocation X21)	pesticides application $(X14)$ No of $(X14)$ 308.000 cattles(X15)Total amount of $cowdung$ produce(X16)-29.230 (2000)Avg. electric bill for Domestic purpose (X17)-7.042 (2000)Avg. electric bill for Field purpose $(X18)$ -3.736 (2000)Avg. electric bill for Field purpose $(X18)$ -87.342 (2000)Avg. electric bill for Field purpose $(X18)$ -87.342 (2000)Exposure to $daily$ requirements $(X19)$ -90.724 (2000)Exposure to media (X20)-0.084 allocation X21)t value>2.048 significant at-	pesticides application $(X14)$ INo of cattles(X15)308.0000.468Cattles(X15)-0.553Total amount of cowdung produce(X16)-29.230-0.553Avg. electric bill for Domestic purpose (X17)-7.042-0.103Avg. electric bill for Field purpose $(X18)$ -3.736-0.044Avg. electric bill for Field purpose $(X18)$ -87.342-0.467Avg. consumption for daily requirements $(X19)$ -90.724-0.109Exposure to media (X20)-90.724-0.109Expenditure allocation X21)-0.084-0.065t value>2.048 significant atII	pesticides application $(X14)$ Image: space s	pesticides application $(X14)$ Image: second s

The Table 12 presents the Multiple Linear Regression Analysis to estimate that the respective causal contribution of 21 exogenous variables on the dependent variable, return of the product from organic paddy (Y_4) .

Results: It has been found that the variables Cropping Intensity (X_4) and Organic manure application (X_{10}) have recorded a significant causal-effect impact on return of the paddy from organic paddy (Y_4) .

Organic Farming in India: The Village Level Rea	lity
ISBN: 978-93-85822-12-4	153

Revelation: Higher cropping intensity, more organic manure application, increase the production and quality of organic paddy which derives higher return from it. More organic manure applied to the field increase the yield, which in turns increases the return of organic paddy i.e., cropping intensity and organic manure application is directly proportional to the return of the product from organic paddy

So, the variable cropping intensity (X_4) , and organic manure application (X_{10}) can be indicator variables to measure the return of the product from organic paddy (Y_4) . r² value being 0.492 it is to conclude that 49.2 percent of the variability embedded with the consequent variable return of the product from organic paddy (Y_4) has been explained with the combination of the 21 causal variables.

Organic Farming in India: The Village Level I	Reality
ISBN: 978-93-85822-12-4	154

				Multiple r sq - 0.47			
Sl. No.	Variables	Beta	Reg. coef. B	S, error B	t-value	Remarks	
1	Age (X1)	-6.802	-0.59	22.132	-0.307		
2	Education (X2)	-107.291	-0.228	92.181	-1.164		
3	Family size (X3)	-296.158	-0.650	131.683	-2.249		
4	Cropping intensity (X4)	3.360	0.056	11.117	0.302		
5	Total holding size (X5)	-132.941	-0.204	139.991	-0.950		
6	Total home stead area (X6)	-190.242	-0.057	809.648	-0.235		
7	Total area under horticultural crops (X7)	-71.334	-0.085	219.929	-0.324		
8	Total area under field crops (X8)	195.313	0.547	83.339	2.344	*	
9	Irrigation status (X9)	- 1520.128	-0.114	2519.893	-0.603		
10	Organic manure application (X10)	-0.357	-0.041	1.788	-0.200		
11	Green leaf manure application (X11)	9.539	0.028	65.699	0.145		
12	Bio-Fertilizer application (X12)	2798.443	0.107	5430.830	0.515		
13	Compost application (X13)	-21.603	-0.186	30.675	-0.704		

Table 6.13: Multiple Regression Analysis: Return of the product from inorganic paddy (Y₅) vs. 21 causal variables (X₁-X₂₁).

					r	1
14	Organic	240.813	0.382	131.759	1.828	
	pesticides					
	application					
	(X14)					
15	No of cattles	516.502	0.646	254.621	2.069	*
	(X15)					
16	Total amount of	-33.433	-0.520	22.505	-1.486	
	cowdung					
	produce (X16)					
17	Avg. electric bill	-9.667	-0.117	18.999	-0.509	
	for Domestic					
	purpose (X17)					
18	Avg. electric bill	0.982	0.010	21.094	0.047	
	for Field					
	purpose (X18)					
19	Avg.	-73.324	-0.323	64.331	-1.140	
	consumption for					
	daily					
	requirements					
	(X19)					
20	Exposure to	-220.469	-0.217	211.209	-1.044	
	media (X20)					
21	Expenditure	0.150	0.095	0.392	0.384	
	allocation (X21)					
	t value>2.048					
	significant at					
	p=0.05(*)					

The Table 13 presents the Multiple Linear Regression Analysis to estimate that the respective causal contribution of 21 exogenous variables on the dependent variable, return of the product from inorganic paddy (Y_5) .

Results: It has been found that the variables Total area under field crops (X_8) and No. of cattles (X_{15}) has recorded a significant causal-effect impact on return of the product from inorganic paddy (Y_5) .

Revelation: The more the area under field crops, the higher will be the return of the product from inorganic paddy (Y_5) . So, land as a resource still has got a decisive impact on both the organic and inorganic farming in terms of their economic and biological activities.

Here, also the no. of cattles has contributed a substantial impact on return of the product from inorganic (Y_5). So, a mixed between organic manure and inorganic farming has had a substantial impact on the return.

So these two variables can be indicator variables to measure the return of the product from inorganic paddy $(Y_5)..r^2$ value being 0.473 it is to conclude that 47.3 percent of the variability embedded with the consequent variable return of the product from inorganic paddy (Y_5) , has been explained with the combination of the 21 causal variables.

Table 6.14: Multiple Regression Analysis: Return of the product
from mixed farming both organic and inorganic paddy
(Y_6) vs. 21 causal variables $(X_1 - X_{21})$.
Multiple r sq. 0.4

	(16) vs. 21 causal variables $(x_1 - x_{21})$. Multiple r sq- 0.46							
Sl.	Variables	Beta	Reg.	S, error B	t-	Remarks		
No.			coef.		value			
			B					
1	Age (X1)	-6.808	-0.069	19.007	-0.358			
2	Education (X2)	-119.679	-0.298	79.164	-1.512			
3	Family size(X3)	233.873	-0.600	113.088	2.068	*		
4	Cropping intensity (X4)	1.112	0.022	9.547	0.116			
5	Total holding size(X5)	-119.142	-0.214	120.222	-0.991			
6	Total home stead area(X6)	-173.294	-0.061	695.313	-0.249			
7	Total area under horticultural crops(X7)	28.784	0.040	188.871	0.152			
8	Total area under field crops (X8)	153.982	0.504	71.570	2.151	*		
9	Irrigation status (X9)	- 1068.705	-0.094	2164.044	-0.494			
10	Organic manure application (X10)	0.709	0.094	1.536	0.462			
11	Green leaf manure application (X11)	17.921	0.061	56.421	0.318			
12	Bio-Fertilizer application (X12)	353.769	0.016	4663.911	0.076			
13	Compost application (X13)	-7.265	-0.073	26.343	-0.276			
14	Organic pesticides application (X14)	222.244	0.413	113.152	1.964			
15	No of cattle's (X15)	412.251	0.603	218.664	1.885			

Empirical Analysis

	-					
16	Total amount of cowdung	-31.331	-0.570	19.327	-1.621	
	produce(X16)					
17	Avg. electric bill for Domestic purpose (X17)	-8.355	-0.118	16.316	-0.512	
18	Avg. electric bill for Field purpose (X18)	-1.377	-0.016	18.115	-0.076	
19	Avg. consumption for daily requirements (X19)	-80.333	-0.414	55.247	-1.454	
20	Exposure to media(X20)	-155.597	-0.179	181.383	-0.858	
21	Expenditure allocation (X21)	0.033	0.025	0.337	0.099	
	t value>2.048 significant at p=0.05(*)					

The Table 14 presents the Multiple Linear Regression Analysis to estimate that the respective causal contribution of 21 exogenous variables on the dependent variable, return of the product from mixed farming both organic and inorganic paddy (Y_6).

Results: It has been found that the variables Family size (X_3) and Total area under field crops (X_8) has recorded a significant causal-effect impact on return of the product from mixed farming both organic and inorganic paddy (Y_6) .

Revelation: Family size shows that the smaller the family size, the higher has been the return. So, no. of family members have got an inverse relationship with the return of the product from mixed farming both organic and inorganic paddy (Y_6).

It is also well discernible that the total area under field crops has positively impact on return of the product from mixed farming both organic and inorganic paddy (Y_6).

So these two variables can be indicator variables to measure the return of the product from mixed farming both organic and inorganic paddy $(Y_6)..r^2$ value being 0.469 it is to conclude that 46.9 percent of the variability embedded with the consequent variable return of the product from mixed farming both organic and inorganic paddy (Y_6) , has been explained with the combination of the 21 causal variables.

Multiple r sq - 0.253 Variables Remarks SI. Beta Reg. S, error t-value No. coef. B B 4.594 Age (X1) 1.329 0.066 0.289 1 2 Education (X2) -12.521 -0.153 19.132 -0.654 3 Family size (X3) 5.796 0.073 27.331 0.212 * 4 Cropping 2.888 0.085 2.307 2.385 intensity (X4) 5 Total holding 25.399 0.224 29.055 0.874 size (X5) 6 Total home stead _ -0.323 168.045 -1.118 area (X6) 187.851 7 Total area under 21.133 0.144 45.647 0.463 horticultural crops (X7) 8 Total area under -0.585 -0.009 17.297 -0.034 field crops (X8) 9 Irrigation status 171.587 0.074 523.011 0.329 (X9) Organic 10 manure 0.023 0.015 0.371 0.061 application (X10) 11 Green leaf 19.939 0.315 13.636 2.389 * manure application (X11) **Bio-Fertilizer** 100.500 0.022 1127.183 0.089 12 application (X12)

Table 6.15: Multiple Regression Analysis: Livelihood from organic paddy (Y_7) vs. 21 causal variables $(X_1 - X_{21})$.

					1	1
13	Compost	5.174	0.255	6.367	0.813	
	application (X13)					
14	Organic	27.964	0.255	27.347	1.023	
	pesticides					
	application (X14)					
15	No of cattles	-2.406	-0.017	52.847	-0.046	
	(X15)					
16	Total amount of	-1.076	-0.096	4.671	-0.230	
	cowdung					
	produce (X16)					
17	Avg. electric bill	-0.771	-0.053	3.943	-0.195	
	for Domestic					
	purpose (X17)					
18	Avg. electric bill	5.485	0.306	4.378	1.253	
	for Field purpose					
	(X18)					
19	Avg.	5.748	0.145	13.352	0.430	
	consumption for					
	daily					
	requirements					
	(X19)					
20	Exposure to	12.475	0.071	43.837	0.285	
	media(X20)					
21	Expenditure	2.087	-0.318	0.081	2.073	*
	allocation (X21)					
	t value>2.048					
	significant at					
	p=0.05(*)					

The Table 15 presents the Multiple Linear Regression Analysis to estimate that the respective causal contribution of 21 exogenous variables on the dependent variable, Livelihood from organic paddy (Y_7) .

Empirical Analysis

Results: It has been found that the variables Cropping intensity (X_4) , Green leaf manure application (X_{11}) and Expenditure allocation (X_{21}) has recorded a significant causal-effect impact on Livelihood from organic farming (Y_7) .

MODEL - 14

Revelation: The table depicts that more green leaf manure application; cropping intensity and expenditure allocation have higher contribution on livelihood from organic farming. Due to more green leaf manure application, the production from organic farming is remarkably increasing which provides the better livelihood. Higher cropping intensity provides farmer the multiple source of livelihood, which ultimately increases the standard of living of the farmer. Modernization of agriculture is only

possible with higher expenditure allocation in farming and that modernization in agriculture allows farmers to enjoy a better livelihood.

So these three variables can be indicator variables to measure the Livelihood from organic farming $(Y_7)..r^2$ value being 0.253 it is to conclude that 25.3 percent of the variability embedded with the consequent variable Livelihood from organic farming (Y_7) , has been explained with the combination of the 21 causal variables.

Factors	Variables	Factor	% of	Cumulative	Factors
		Loading	Variance	%	Renamed
	Education(X2)	0.608	20.700	20.700	
	Total area under				
	horticultural crops				
	(X7)	0.483			
	Total area under				
	field crops (X8)	0.649			
Factor	Irrigation status				
1	(X9)	0.604			
	Organic manure				Agro
	application (X10)	0.582			Agro- ecology
	Bio-fertilizer				ecology
	application (X12)	0.641			
	Compost				
	application (X13)	0.740			
	No. of cattles				
	(X15)	0.631			
	Total amount of				
	cowdung produce				
	(X16)	0.733			

Table 6.16: Factor Analysis- Conglomeration of
21 variables in 8 factors.

	l .				
	Avg. consumption for daily	0.824	12.934	33.634	
Factor 2	requirements (X19)				Consumption
	Exposure to media(X6)	0.713			
	Cropping Intensity (X4)	0.451	9.778	43.412	
Factor 3	Green leaf manure				Resource
	application (X11)	0.538			
	Total holding size (X5) Total home stead		8.143	51.555	
	area (X6) Avg. electric bill	0.417			E.
Factor 4	for domestic purpose (X17)				Energy Consumption
	Avg. electric bill for field purpose	0.479			
	(X18)	0.397			
Factor 5	Age(X1)	0.406	7.179	58.734	
Factor 6	Family size (X3) Organic	0.274	6.647	65.381	Family
	pesticides application (X14)	0.516			Capacity
Factor 7	Expenditure allocation (X21)	0.587	5.088	76.249	

The table shows the factor analysis where in different factors have been formed out of the conglomeration of 21 homogenous variables.

MODEL - 15

Revelation : The factor 1 has included following 9 no of variables i.e., Education (X_2), Total area under horticultural crops (X_7), Total area under field crops (X_8), Irrigation status (X_9), Organic manure application (X_{10}), Bio-fertilizer application (X_{12}), Compost application (X_{13}), No. of cattle (X_{15}), Total amount of cow dung produce (X_{16}) which have contributed 20.700% of variance and has been renamed as **Agro-ecology**. The factor 2 has included 2 no of variables i.e. Exposure to media (X_6), Avg. consumption for daily requirements (X_{19}) that have contributed 12.934% of variance have been renamed as **Consumption**.

Revelation : The factor 3 has included 2 no of variables i.e. Cropping Intensity (X₄), Green leaf manure application (X₁₁) which have contributed 9.778% of variance and has been renamed as **Resource**. The factor 4 has included 4 variables under it i.e. Total holding size (X₅), Total home stead area (X₆), Avg. electric bill for domestic purpose (X₁₇), Avg. electric bill for field crops (X₁₈) which have contributed 8.143% of variance and has been renamed as **Energy Consumption**. The factor 6 has included 2 no of variables i.e. Family Size(X₃) and Organic pesticides application (X₁₄) that have contributed 6.647% of variance has been renamed as **Family capacity**.

COMPARISON BETWEEN ORGANIC AND INORGANIC FARMING AS EVIDENCED IN THE STUDY

The productive behaviour of organic and inorganic farming has got both similarities and unique characters. While organic farming is followed in Aman Rice, which is mainly a rainfed crop in North Bengal. The inorganic farming is followed both in Boro and Aman Rice.

By dint of the nature of enterprise, inorganic rice production has been cost intensive, input intensive and labour intensive as well. Organic farming, it is low chemical input and low energy intensive farming.

The variables which have recorded significant correlation uniquely in organic paddy have been cropping intensity (X_4) , total holding size (X_5) , green leaf manure (X_{11}) . So, holding size and green leaf manure are the two important considerations for the respondents of organic paddy growers visa-vis organic farming.

Similarly, for inorganic farming, total area under field crops (X_8), irrigation status (X_9) and organic manure application (X_{10}) have come up with unique correlation with the productivity of inorganic paddy. So, for the respondents growing inorganic paddy, there are the important considerations especially the irrigation status (X_9).So, irrigation can be considered a critical intervention that has made a perceptible differences between organic and inorganic paddy enterprise.

For both, the enterprise i.e., organic paddy and inorganic paddy, cropping intensity (X_4) , exposure to media (X_{20}) have come up as common character. So, this two variables can explore a missing link between organic and inorganic paddy or, here in the study organic and inorganic farming.

Organic Farming in India: The Village Level	Reality
ISBN: 978-93-85822-12-4	168

PARTICIPATORY DELINEATION

• Venn Diagram

A Venn diagram is a diagram that shows all possible logical relations between a finite collections of sets.

What does Venn diagram represents in agro ecosystem analysis?

- Key institutions and individuals in and around the ecosystem.
- Their relationship and importance as perceived by the villagers.

Basis of making Venn diagram

- Size of discs.
- Distance of the discs from the large circle.

Steps to be followed for preparing Venn diagram

- Sit with the villagers.
- Identify the important institutions.
- Cut paper circles of different sizes.
- The largest circle is considered as village.
- Ask the villagers to choose the different size's discs for the identified institutions according to the importance of the institutions.
- Arrange all the discs around the large circle as per following rule:
 - > Distant circle: minimum contact between village and the institution.
 - > Touching circle: information sharing only.
 - > Overlapping: co-operation in decision.

MODEL – 18

• Matrix Ranking

Matrix ranking is an important tool to enumerate the farmers' preference and the decision of the innovation-decision process. According to the preferences of the farmers a matrix has been formed to delineate the rank of the particular variety or crops on the basis of their qualitative features. During the data collection, I have conducted a study to know the farmers' preference regarding the rice variety in the village Karola. The study is conducted on the basis of the qualitative aspects like the qualitative impact of rice crop on the basis of its the production, cooking quality, scented, disease-pest free, climatic resistant, profit according to the preferences of the farmers.

Organic Farming in India: The Village Level F	Reality
ISBN: 978-93-85822-12-4	171

OBJECTIVES:

- To know the most suitable variety for a particular area.
- To rank the varieties according to their performance.
- To judge the market value of the variety.

6.17: Table: Matrix Ranking: Choices and Ranking of Rice varieties in Karola village.

Attribute	Productio	Cookin	Scente	Disease	Climatic	Pro	Tota	Ra
S	n	g	d	-pest	resistant	fit	1	nk
Varieties		quality		free				
Swarna	9	9	8	5	5	9	45	1st
Masuri								
Tulai	8	8	6	5	6	9	42	2n
Panji								d
Jeera	7	7	6	6	5	7	38	4th
moti								
Kalabho	8	6	7	6	5	8	40	3rd
g								
Avishek	6	4	5	7	6	6	34	6th
Arise	5	5	4	6	6	6	32	7th
28	6	5	5	6	7	6	35	5th
Total	49	44	41	41	40	51		

RESULT AND DISCUSSION

From the matrix ranking on rice variety it is observed that the marks obtained by **Swarna Masuri** is the **highest** which provides greatest suitability to farming community to raise their income whereas the marks obtained by the variety **Arise** is the **lowest**.

CONCLUSION

Hence, the variety **Swarna Masuri** is the most popular and the variety Arise is the least popular variety in Karola village.

Organic Farming in India: The Village Level Re	ality
ISBN: 978-93-85822-12-4	172

Attribut	Productio	Cookin	Scente	Diseas	Climati	Profi	Tota	Ran
es	n	g	d	e-pest	С	t	l	k
		quality		free	resista			
Varieties					nt			
Tulai	7	7	6	6	6	7	39	4th
Panji								
Sub-1	9	9	8	5	5	9	45	1st
Kalabho	7	5	8	7	6	7	40	3rd
g								
Swarna	8	7	7	5	5	9	41	2nd
28	7	5	5	6	6	7	36	5th
Total	38	33	34	29	28	39		

6.18: Table: Matrix Ranking: Choices and Ranking of Rice varieties in Ghegirghat village.

RESULT AND DISCUSSION

From the matrix ranking on rice variety it is observed that the marks obtained by **Sub-1** is the **highest** which provides greatest suitability to farming community to raise their income whereas the marks obtained by the variety **28** is the **lowest**.

CONCLUSION

Hence, the variety **Sub-1** is the most popular and the variety Arise is the least popular variety in Ghegirghat village.